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 All climate change predictions of the
future are based on Earth System
models.

« Based on fundamental physics but
need many approximations.

« Can we believe the models?

"Prediction is very difficult,
especially if it's about the future." --
Nils Bohr, Nobel laureate in Physics

"Those who have knowledge, don't
predict. Those who predict, don't
have knowledge. " --Lao Tzu, 6th
Century BC Chinese Poet

"This is the first age that's ever paid
much attention to the future, which
is a little ironic since we may not
have one. " --Arthur C. Clarke

"The herd instinct among
forecasters makes sheep look like
independent thinkers. " --Edgar R.
Fiedler
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et With critical climate risks?

What are the strengths of palaeoclimate studies?

Highlighting new processes and mechanisms that could be
important: giving context for the future.

Identifying past “rapid” climate change events and investigating
different “states” of the Earth system

Providing data to test and evaluate models
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e With critical climate risks?

What are the strengths of palaeoclimate studies?

Highlighting new processes and mechanisms that could be
important: giving context for the future.

Identifying past “rapid” climate change events and investigating
different “states” of the Earth system

Providing data to test and evaluate models

What are the weaknesses of palaeoclimate studies?
Palaeo-observations give indirect measurement of climate

Must embrace the uncertainties in both model and data

No perfect direct analogue of next century so difficult to make
conclusions about future change without linking to modelling
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Palaeoclimate evidence provided
powerful evidence that climate
sensitivity could not be as high as
suggested by the instrumental and
model estimates.

IPCC, WG1, 2013
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Tipping points: Lenton et al 2008

West African Monsoon
Mid-Holocene (6000 years BP)

ENSO variability

Pliocene (3 million years ago)

Gas Hydrates

Paleocene-Eocene thermal maximum
(~55 million years ago)

Atlantic Meridional Overturning
Circulation

Stage 3 (60,000 years onwards)

Ice sheet stability
Eemian (125,000 years ago)

Amazon Rainforest
Last 21,000 years
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To date, all IPCC-class models have failed to reproduce “green Sahara” during
mid-Holocene and hence cannot be used to investigate subsequent “tipping point”
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Features similar to future

changes
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Key Features

Common throughout 220-50
million years ago but Early
Eocene (~55Ma) was most
recent example

No / small permanent ice
sheets

Warm ocean bottom waters
Reduced continentality

Probable high atmospheric
CO, concentrations

Changed continents
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Ocean Surface Temperature (in C)

Early Eocene Annual Mean

40N

Stott et al., 1991

4 0 4 8 12 16 20 24 28 32 36 40 e 1901
. Shacklet t al., 1984
To date, all IPCC-class models have failed to reproduce Oberhangl et al. 1991
warm poles Pearson et al., 200
aldes, 2011, Na wivw.bristol.ac.uk/ca
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Climate models are based on physics of climate, but inevitably include
parameters that are relatively poorly defined We need to know sensitivity to

these uncertain parameters

Method
Select 10 key model parameters

Select reasonable possible ranges for each parameter
Vary them together (using a Latin-hypercube sampling method)
Use low resolution (FAMOUYS) version of HadCM3

Clouds:
Threshold of relative humidity for cloud formation (RHcrit)
Precipitation ice fall out speed (VF1)
Conversion rate of cloud liquid water droplets to precipitation (CT)

Threshold value of cloud liquid water for formation of precip. (CW)
Convection : Convective roughness length over the sea (ZOFSEA)
Gravity wave parameters (WAVE)

Sea ice low albedo (ALPHAM)

Diffusion in ocean and atmosphere

Range of values from literature (Murphy et al. 2004)




ok io. A “warm poles” example
Ensemble Member

Jan  Eocene_tcwjm6

Surface Air Temperature (in C) Jan  Eocene_tcwjmé Precipitation (in mm/day)

90N

« Large part of change related to cloud cover
» Revised model now fits the data reasonably well (and ALOT better than

older model)
« With this model, future climate change sensitivity ~3.1C (c.f. 2.7 from

standard model)
Sagoo et al 2013
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Heinrich Layer (Heinrich, 1988)

layers with anomalously high lithic fraction in
North Atlantic sediment cores

North American source (generally)

Evidence of Heinrich Layers right across the
Atlantic as far as Iberian Peninsular

Heinrich Events Debris from glacial icebergs
Anomalously large discharge of ice that gives found in ocean sediment
Heinrich Layer

Possible Mechanism

Binge-purge cycle of Ice Sheets or ice shelf
collapse results in collapse of Atlantic ocean
circulation and big climate change
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N. Atlantic Ocean Circulation:
A paradigm of palaeo change

and tipping points
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Alley, R.B. 2000
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Simulate the last “deglaciation”, from 21,000 years ago
to 10,000 years ago.
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ceornsture - Are the models tuned badly?

certainty

Salt Export (Fov) from Atlantic good indicator of stability of AMOC
(e.g. Rahmstorf 1996, Dijkstra 2007)

Standard setup of model
Freshwater Transport (in Sv, at 335)

Ensemble 30year running average, Ann
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New skill score = Good climate + good AMOC + good Fov

Target parameters which may have an impact on AMOC
strength

Ocean parameters : Horizontal and vertical diffusion
Sea 1ce parameters: albedo, strength of ice, maximum coverage

Heat, momentum and moisture transfer (all potentially have
impact on buoyancy flux) : ocean roughness, bulk aerodynamic
coefficients of momentum and heat ...

Initial single parameter sweeps.

Subsequently use iterative Importance Sampling method
(Annan and Hargreaves 2010) (In progress)
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Impact of Changing
Model Parameters

Fresh Water Hosing Experiment:
Add fresh water into N. Atlantic (50-70N).
Turn on at year 100, turn off at year 400
Different maximum amounts of fresh water

Merid Stream Func. Atlantic (Sv) at 33N

(from lat= 33 to 33)
ALL_MONTHS
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Be careful: Work in progress! .;
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Surface Air Temperature (in C)

FAMOUSMI1 - FAMOUSM{t=(071-100) -{071-100) Ann

Precipitation (in mm/day)
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Change of climate due to an (idealised) increase in melting of 0.1Sv
c.f. best estimate of Greenland melt will be ~0.05Sv

Be careful: Work in progress! ;
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¢ Palaeodata can tell us huge amounts about the stability of various
components of the Earth System

For a few cases, more detailed analysis can examine the ability of
climate models to simulate critical risk/tipping points.

¢ In many cases, IPCC-class models have failed to reproduce basic
characteristics of past extreme/rapid changes — they are too stable

Suggests that we may be underestimating some critical climate risks

But progress can be made in “tuning” the models for some of these
test cases (although we are still struggling to match speed of change)

And I have highlighted the cases where there are clear problems!




